首页 - 发表论文 - 正文

dissertation

硕士生丁靖楠在ACS Applied Materials & Interfaces发表论文:Toward Theoretical Capacity and Superhigh Power Density for Potassium-Selenium Batteries via Facilitating Reversible Potassiation Kinetics

2022-05-21

研究背景

由于锂资源有限且分布不均,使锂离子电池的成本居高不下,因此亟需寻找可替代的大规模储能设备。钾的物理化学性质与锂相似,且钾资源丰富、成本低廉,这使钾离子电池有望在大规模储能中得到应用。但目前钾离子电池缺乏高性能的正极材料,严重限制了钾离子电池的发展。由于硒具有高的理论质量比容量和体积比容量,成为钾离子电池潜在的高性能正极材料,但硒正极仍然面临着穿梭效应、体积膨胀和硒利用率低的问题。

因此本文基于碳基体材料的形貌设计,制备了多孔空心碳球结构(AHCS),负载硒后,得到硒-多孔空心碳球复合正极材料(Se@AHCS),该复合材料通过缩短钾离子的扩散路径、吸附多硒化物中间体、缓解体积膨胀,有效地提高了硒-碳复合正极的倍率性能和循环稳定性。

 

主要工作

首先利用模板法和水热法制备了多孔空心碳球(AHCS)和实心碳球(ACS),负载硒后,得到硒-碳复合正极材料(Se@AHCS和Se@ACS)。


Figure 1. (a) Schematic illustrating the preparation process of Se@AHCS. (b)-(c) SEM images of HCS (b) and Se@AHCS (c). (d) TEM image of Se@AHCS. (e) HRTEM image of Se@AHCS (inset: SAED pattern). (f) HAADF image of Se@AHCS. (g-j) Element mapping of Se@AHCS.

 

接下来对Se@AHCS和Se@ACS复合材料进行表征。Se@AHCS和Se@ACS复合材料具有相同的硒的存在形式和石墨化程度,氮气吸脱附曲线和孔径分布证明硒成功的进入到碳基体中,Se-C键的存在有利于抑制穿梭效应。


Figure 2. (a) XRD patterns of Se powder, Se@AHCS and Se@ACS. (b) Raman spectra of Se powder, Se@AHCS and Se@ACS. (c) N2 adsorption/desorption isotherms of AHCS and Se@AHCS. (d) Pore size distributions of AHCS and Se@AHCS. (e) XPS C 1s spectrum of Se@AHCS. (f) XPS Se 3d spectrum of Se@AHCS.

 

将所制备的复合正极进行电化学测试。Se@AHCS正极具有优异的可逆性,且可逆容量高、倍率性能好,具有良好的循环稳定性以及较小的电荷转移电阻。通过与已报道的文献相比较仍然具有很大的优势。


Figure 3. (a) CV curves of the Se@AHCS cathode at 0.1 mV s-1 between 2.8 and 0.5 V. (b) Discharge-charge profiles of Se@AHCS at 50 mA g-1; (c) Specific capacities at various current densities. (d) Discharge–charge voltage profiles at 0.1, 0.2, 0.5, 1, 2, 5, and 10 A g-1, respectively. (e) Rate performance comparison of Se@AHCS cathode versus literature reported values. (f) Ragone plot of Se@AHCS cathodes and literature reported values. (g) Cycling performance of the Se@AHCS and Se@ACS cathodes at 0.2 and 1 A g-1. (h) Nyquist plots of fresh and posted cycled Se@AHCS and Se@ACS based cells.

 

利用CV测试深入地了解了Se@AHCS正极的可逆钾化动力学。由于钾离子的扩散距离缩短,加快了反应动力学,有利于多硒化物的转化。


Figure 4. (a)-(b) CV curves of Se@AHCS (a) and Se@ACS (b) cathodes with scan rate from 0.1 to 1 mV s-1. (c)-(d) The linear fitting plots of the log-transformed peak currents versus scan rates for Se@AHCS (c) and Se@ACS (d). (e) Capacitive charge storage contribution for Se@AHCS cathode at 1 mV s-1. (f) Capacitive charge storage proportions among total capacities for Se@AHCS and Se@ACS cathodes at scan rates from 0.1 to 1 mV s-1.

 

GITT测试再次证明了Se@AHCS正极具有优越的反应动力学,放电产物为K2Se,表明2e-电荷转移可以顺利进行,排除了热力学因素影响电化学性能的可能性,而动力学因素则主导了复合正极的电化学性能。

 

Figure 5. (a) GITT profiles of the discharges and charge process for Se@AHCS and Se@ACS cathodes. (b) The K-ion diffusion coefficient as a function of the state of discharging/charge process. (c-d) HRTEM images and the corresponding Fast Fourier transform (FFT) of Se@AHCS discharged to 0.5 V vs. K+/K. (e) Formation energy of KxSe1-x. (f) Schematic illustrating the K+ transportation and selenium phase change in Se@AHCS cathode.

 

结论

本文阐明和解决了K-Se电池中硒利用率不低和倍率性能差的问题。两种复合正极材料具有相同的硒负载量、硒存在形式和Se-C界面属性,但在可逆钾化过程中K+的扩散距离存在较大差异。K+扩散距离短至30 nm,使Se@AHCS正极具有647.1 mA h g-1的可逆容量,在15C下具有224.1 mA h g-1的高倍率容量,能量密度和功率密度可以达到808.3 Wh kg-1139.1 W kg-1198.1 Wh kg-18777.8 W kg-1。放电最终产物为K2Se,这验证了2e-电荷转移可以顺利完成,从而排除了热力学因素限制K-Se电池性能的可能性,为K-Se电池的高性能硒正极的设计和制备提供了指导。