2022-05-21
研究背景
锂硫电池由于其极高的理论比容量(1675 mAh g-1)和能量密度(2500 Wh kg-1)有望成为下一代高能量密度二次电池。但是锂硫电池中多硫化物的穿梭效应严重阻碍了其实际应用,锂硫电池仍存在容量衰减快、倍率性能差等问题。近几年来,碳载单原子催化剂(SACs)因为其原子利用率高、催化活性高、选择性可调控、稳定性好等优点,引起了人们的广泛关注。然而,目前锂硫电池中使用的碳载SACs都是基于d区过渡金属,其中部分填充的d区是电催化活性的来源。与d区过渡金属元素相比,由于d带被完全占据,p区金属通常表现出有限的表面催化活性。有趣的是,利用M-Nx配位构型,p区金属可以被激活用于电催化。例如,具有Sn-Nx、Sb-N4位的单金属催化剂对氧还原反应表现出较高的活性和四电子选择性。值得注意的是,基于主族p区金属的SACs从未被考虑用于催化锂硫电化学。对于锂硫电池的单原子催化剂,将金属目录扩展到p区金属具有重要的指导意义。
因此,本文在理论计算的启发下,制备了负载单原子锡位点的氮掺杂碳纳米片(SnSA-NC)作为提高锂硫电池性能的有效催化剂。实验充分验证了理论计算,并证明了SnSA-NC独特的电子分布和p能带结构。该电子结构赋予了SnSA-NC较强的长链多硫吸附能力和催化多硫化物转化的活性。采用SnSA-NC功能化隔膜的锂硫电池显著提高了循环性能和倍率性能。本文首次报道了一种高效的用于金属硫电池的p区金属基催化剂,并成功地确定了其电催化活性的来源。该工作发表在Journal of Materials Chemistry A上,硕士生肖彩霞为文章第一作者,王浩志博后、丁佳教授和张江威副研究员为文章共同通讯作者。
主要工作
文章首先通过DFT计算来探索Sn-N4构型在电催化中的潜力,并确定该位点的活性中心。结果表明,Sn单原子的掺杂增强了氮掺杂碳材料的电子导电性。Sn单原子的引入也使Sn-N4位点附近产生了电子再分布。其中,Sn原子在SnSA-NC中的p带中心最接近费米能级,这在一定程度上表明Sn-N4中Sn原子是电催化活性中心。
Figure 1: (a) Band structure and total density of states (TDOS) of SnSA-NC and NC models. (b) Projected density of states (PDOS) of Sn, N, C and N, C in SnSA-NC and NC, respectively. (c) Difference charge density of SnSA-NC configuration. Cyan and yellow represent the decrease and increase in electron density.
接下来利用双氰胺中的氮原子对金属原子的固定作用,制备了碳载Sn单原子催化剂(SnSA-NC)。此外,还制备了不含Sn原子的对照样品NC。
Figure 2: (a) Schematic demonstrating the synthesis process of SnSA-NC. (b) TEM image of SnSA-NC. (c-d) HAADF-STEM images of SnSA-NC. (e-h) HAADF images of SnSA-NC and corresponding EDS elemental mapping.
通过XPS和XAFS表征,确定Sn单原子的配位环境为Sn-N4,Sn原子的化合价为+3.2。
Figure 3: (a) N 1s XPS spectrum of SnSA-NC. (b) Sn 3d XPS spectrum of SnSA-NC. (c) Sn K-edge XANES of SnSA-NC, SnO2 and Sn foil. (d) Sn valance state determination based on linear fitting curve derived from Sn K-edge XANES spectra. (e) FT-EXAFS spectra of SnSA-NC, SnO2 and Sn foil. (f) FT of the k2-weighted EXAFS spectrum and fit in R space of SnSA-NC with the magnitude (red) and real component (green). WT for the k2-weighted EXAFS signals of (g) SnSA-NC, (h) SnO2 and (i) Sn foil.
通过Li2S6吸附测试证明了SnSA-NC对Li2S6的强吸附作用,并且和计算得到的吸附能相吻合。除强吸附能力以外,SnSA-NC还展现了对多硫化物优秀的催化能力,包括快速的反应动力学和有利的反应热力学。
Figure 4: (a) UV-vis spectra of the Li2S6 solution after exposure to NC, SnSA-NC. Inset is the corresponding digital images of the solutions. (b-c) Configurations of the Li2S6 adsorption on SnSA-NC and NC by DFT calculation. (d) CV curves of the Li-S cell with SnSA-NC modified separator at different scan rates. (e-g) Plots of CV peak current versus the square root of the scan rates for the first cathodic reation (Peak 1), the second cathodic reaction (Peak 2) and the main anodic reaction (Peak 3). (h) Energy profiles for the reduction of polysulfides on NC and SnSA-NC. (i-j) The decomposition energy profiles of Li2S on SnSA-NC (i) and NC (j), the inset images in panels are the detailed decomposition path of Li2S on SnSA-NC and NC. (k) The Crystal Occupation Hamiltonian Population (COHP) analysis for the Li-S bonds in SnSA-NC and NC adsorption configurations.
得益于SnSA-NC对多硫化物的强吸附作用和强催化能力,采用SnSA-NC功能化隔膜的锂硫电池展现出了优异的倍率性能和循环性能。该电池能够在0.2 C时提供1233 mAh/g的比容量,在3 C时达到603 mAh/g的比容量。
Figure 5: The electrochemical performance of Li-S batteries with bare, NC, SnSA-NC modified PP separators: (a) CV curves of the Li-S cells at 0.1 mV s-1; (b) Charge-discharge curves at 0.2 C; (c) Charge-discharge voltage profiles of SnSA-NC Li-S cell at various current rates; (d-e) High and low plateau capacities at different current densities; (f) potential hysteresis values between charge and discharge plateau; (g) specific capacities at various current rates; (h) cycling performance at 0.5 C and the corresponding Coulombic efficiency of SnSA-NC Li-S cell.
结论
综上所述,我们在理论计算的指导下开发了p区单原子Sn-N4位点修饰碳纳米片催化剂。采用AC-STEM、XPS、XAFS和DFT计算方法,系统地研究了Sn-N4位点的空间分散性、原子构型、电子分布和p能带结构。在锂硫电池电催化体系中,Sn-N4位点表现出抑制长链多硫化物迁移和加速多硫化物转化的双功能性,SnSA-NC功能化隔膜提高了锂硫电池的循环性能和倍率性能。此外,还确定了Sn-N4对硫氧化还原的电催化活性的来源。单个Sn原子与氮配体之间的强共价相互作用调节了Sn的p能带结构,使p带中心接近费米能级。这一特性将Sn原子定义为Sn-N4构型中真正的活性位点。这有助于扩大金属硫电池和其他潜在电催化系统的主族金属基催化剂的应用范围。
文章下载地址:https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA09422J